Robust Speech Recognition Based on Dereverberation Parameter Optimization Using Acoustic Model Likelihood
スポンサーリンク
概要
- 論文の詳細を見る
Automatic speech recognition (ASR) in reverberant environments is a challenging task. Most dereverberation techniques address this problem through signal processing and enhances the reverberant waveform independent from the speech recognizer. In this paper, we propose a novel scheme to perform dereverberation in relation with the likelihood of the back-end ASR system. Our proposed approach effectively selects the dereverberation parameters, in the form of multiband scale factors, so that they improve the likelihood of the acoustic model. Then, the acoustic model is retrained using the optimal parameters. During the recognition phase, we implement additional optimization of the parameters. By using Gaussian mixture model (GMM), the process for selecting the scale factors become efficient. Moreover, we remove the dependency of the adopted dereverberation technique on the room impulse response (RIR) measurement, by using an artificial RIR generator and selecting based on the acoustic likelihood. Experimental results show significant improvement in recognition performance with the proposed method over the conventional approach.
論文 | ランダム
- アメリカにおけるサーティフィケート・プログラムの普及 : 非学位課程の拡大構造
- アメリカにおけるサーティフィケート・プログラムの展開 : 学位でない学歴資格の拡大(資格と人材育成)
- 高等教育ユニバーサル化の文脈における就学行動モデルの変容 : High School and Beyond 調査の再分析をもとに
- アメリカにおける高等教育進学者の進学・就業パターンとその特徴
- 高等教育進学行動の非標準型化 : アメリカの場合(高等教育(4))