Remarks on the Relations between Non Abelian de Rham Theories with respect to G and ΩG
スポンサーリンク
概要
- 論文の詳細を見る
Let G be GL (n,c) and ΩG the based loop group over G. Then the (stable) first and second non abelian de Rham sets with respect to G and ΩG are related by the diagram … Here, ΩMe is the space of zero homotopic loops over M, g is the Lie algebra of G, Ωg is the loop algebra over g, and M¹ and M¹Ωg are the sheaves of germs of g- and Ωg-valued integrable forms on M, a smooth Hilbert manifold. The maps ρ*i, B₀ and B₁ are denned by using Grassmanhian model of loop qroups (B is defined with some additional assumptions at this stage). Geometric characterization of the map from M into ΩG, the basic central extension of ΩG, together with its quantization condition and relations of several characteristic classes of non abelian de Rham sets, including string classes, and the above maps are also given.
- 信州大学理学部の論文
- 1989-03-30
信州大学理学部 | 論文
- 中部山岳地帯乗鞍岳の微環境
- 生育高度を異にした2・3幼植物の生長量
- 北部フォッサマグナの新第三系内村層から産出した浮遊性有孔虫化石
- 長野県諏訪湖北方の新第三系横河川累層の中新世放散虫化石
- 松本盆地南部と伊那谷における小坂田ローム層中の浮石層 : 松本盆地の形成過程に関する研究(2)