How to sharpen a tridiagonal pair
スポンサーリンク
概要
- 論文の詳細を見る
Let denote a field and let V denote a vector space over F with finite positive dimension. We consider a pair of linear transformations A : V → V and A* : V → V that satisfy the following conditions: (i) each of A, A* is diagonalizable; (ii) there exists an ordering {Vi} di=0 of the eigenspaces of A such that A* V i ⊆ Vi-1 + Vi + Vi+1 for 0 ≤ i ≤ d, where V-1 = 0 and Vd+1 = 0; (iii) there exists an ordering {Vi*}δi=0 of the eigenspaces of A* such that AV*i ⊆V* i-1+V*i+V*i+1 for 0 ≤ i ≤ δ, where V*-1=0 and V*δ+1=0 (iv) there is no subspace W of V such that AW ⊆ W, A* W ⊆ W, W ≠ 0, W ≠ V. We call such a pair a tridiagonal pair on V. It is known that d = δ, and for 0 ≤ i ≤ d the dimensions of Vi, V*i, Vd-i, V*d-i coincide. Denote this common dimension by ρi and call A, A* sharp whenever ρ0 = 1. Let T denote the -subalgebra of End (V) generated by A, A*. We show: (i) the center Z(T) is a field whose dimension over is ρ0; (ii) the field Z(T) is isomorphic to each of E 0TE0, EdTEd, E* 0TE*0, E*dTE*d, where Ei (resp. E*i) is the primitive idempotent of A (resp. A*) associated with Vi (resp. V*i); (iii) with respect to the Z(T)-vector space V the pair A, A* is a sharp tridiagonal pair. © 2010 World Scientific Publishing Company.
論文 | ランダム
- 屋久島のスギ天然林 : (2) 林分構造と更新過程
- Noncontact Spinning Mechanism Using Rotary Permanent Magnets
- 特殊成分肥料
- 3315 平行カルダン駆動台車における主電動機トルクによるダイナミクス制御の基礎検討(OS2-2:エレベータ・鉄道のダイナミクス,OS2:交通・物流システムのダイナミクス,オーガナイズド・セッション(OS),第18回交通・物流部門大会(TRANSLOG2009))
- テトラオキサンおよびトリオキサンのカチオン開始剤による固相重合物の配向性