Classical and quantum dynamics for an extended free rigid body
スポンサーリンク
概要
- 論文の詳細を見る
In this paper, a free rigid body of dimension three is extended and analysed both in classical and quantum mechanics. The extension is performed by bringing the inverse inertia tensor, which is a positive-definite symmetric matrix for the ordinary rigid body, into an arbitrary real symmetric one. With an arbitrary real symmetric matrix chosen, associated is a Lie–Poisson structure on the Euclidean space of dimension three, through which the classical dynamics for an extended free rigid body is defined, and characterized by two first integrals. In parallel to this, the quantum dynamics is formulated as the problem of simultaneous spectral resolution of the two operators which are viewed as the quantization of the two classical first integrals. Intensive use is made of the unitary representation theory for Lie groups concerned. The explicit spectral resolution is obtained, in particular, when the extended free rigid body is an extended free symmetric top.
論文 | ランダム
- 特集 わたしの余暇支援活動から生まれた成果物 Part1
- 家族介護者の在宅介護負担の現状とその対策 : 北海道T町における介護負担調査および介護に関する啓発活動の効果
- 女子大学生の家族介護に関する意識の現状
- 久里浜だより-219-
- 利用者・家族の立場からみた介護保険の現状と改善課題 (特集 10年目を迎えた介護保険 その現状と課題)