Effective PCA for high-dimension, low-sample-size data with singular value decomposition of cross data matrix
スポンサーリンク
概要
- 論文の詳細を見る
In this paper, we propose a new methodology to deal with PCA in high-dimension, low-sample-size (HDLSS) data situations. We give an idea of estimating eigenvalues via singular values of a cross data matrix. We provide consistency properties of the eigenvalue estimation as well as its limiting distribution when the dimension d and the sample size n both grow to infinity in such a way that n is much lower than d. We apply the new methodology to estimating PC directions and PC scores in HDLSS data situations. We give an application of the findings in this paper to a mixture model to classify a dataset into two clusters. We demonstrate how the new methodology performs by using HDLSS data from a microarray study of prostate cancer.
論文 | ランダム
- 軽症小児頭部外傷におけるCTの適応 : 2歳未満という年齢は危険因子になりえるか(Editorial Comment)
- 軽症小児頭部外傷におけるCTの適応 : 2歳未満という年齢は危険因子になりえるか
- 断ることを知る(温故創新)
- 術中MRIの現状と展望(ニューロイメージングの進歩)
- PETと脳神経外科診療(ニューロイメージングの進歩)