Herbivore-Specific, Density-Dependent Induction of Plant Volatiles: Honest or “Cry Wolf” Signals?
スポンサーリンク
概要
- 論文の詳細を見る
植食者特異的かつ植食者密度依存的な植物揮発性成分の誘導:正直なシグナル?それともオオカミ少年シグナル?. 京都大学プレスリリース. 2010-08-18. http://www.kyoto-u.ac.jp/ja/news_data/h/h1/news6/2010/100818_1.htmPlants release volatile chemicals upon attack by herbivorous arthropods. They do so commonly in a dose-dependent manner: the more herbivores, the more volatiles released. The volatiles attract predatory arthropods and the amount determines the probability of predator response. We show that seedlings of a cabbage variety (Brassica oleracea var. capitata, cv Shikidori) also show such a response to the density of cabbage white (Pieris rapae) larvae and attract more (naive) parasitoids (Cotesia glomerata) when there are more herbivores on the plant. However, when attacked by diamondback moth (Plutella xylostella) larvae, seedlings of the same variety (cv Shikidori) release volatiles, the total amount of which is high and constant and thus independent of caterpillar density, and naive parasitoids (Cotesia vestalis) of diamondback moth larvae fail to discriminate herbivore-rich from herbivore-poor plants. In contrast, seedlings of another cabbage variety of B. oleracea (var. acephala: kale) respond in a dose-dependent manner to the density of diamondback moth larvae and attract more parasitoids when there are more herbivores. Assuming these responses of the cabbage cultivars reflect behaviour of at least some genotypes of wild plants, we provide arguments why the behaviour of kale (B. oleracea var acephala) is best interpreted as an honest signaling strategy and that of cabbage cv Shikidori (B. oleracea var capitata) as a “cry wolf” signaling strategy, implying a conflict of interest between the plant and the enemies of its herbivores: the plant profits from being visited by the herbivore's enemies, but the latter would be better off by visiting other plants with more herbivores. If so, evolutionary theory on alarm signaling predicts consequences of major interest to students of plant protection, tritrophic systems and communication alike.
- 2010-08-17
論文 | ランダム
- 半導体薄膜ガスセンサのガス選択性の改善法
- ホール効果測定による半導体薄膜ガスセンサの研究(化学センサー・一般)
- センサエージェントシステムのためのセンサデバイス(センサー・一般)
- 半導体薄膜を用いた環境計測センサの開発
- 集積化ガスセンサのガス選択性の改善