Arc-disjoint in-trees in directed graphs
スポンサーリンク
概要
- 論文の詳細を見る
Given a directed graph D = (V,A) with a set of d specified vertices S = {s 1,…, s d } ⊆ V and a function f: S → ℕ where ℕ denotes the set of natural numbers, we present a necessary and sufficient condition such that there exist Σ i=1 d f(s i ) arc-disjoint in-trees denoted by T i,1,T i,2,…, $$ T_{i,f(s_0 )} $$ for every i = 1,…,d such that T i,1,…,$$ T_{i,f(s_0 )} $$ are rooted at s i and each T i,j spans the vertices from which s i is reachable. This generalizes the result of Edmonds [2], i.e., the necessary and sufficient condition that for a directed graph D=(V,A) with a specified vertex s∈V, there are k arc-disjoint in-trees rooted at s each of which spans V. Furthermore, we extend another characterization of packing in-trees of Edmonds [1] to the one in our case.
論文 | ランダム
- Marine Science Seminar 深海のトレジャーハンティング--深海に眠る新奇微生物を捕まえろ
- トップへのインタビュー クオール株式会社代表取締役社長 中村勝
- D-12-143 テクスチャマッピングによる映り込みの高速レンダリング(D-12. パターン認識・メディア理解, 情報・システム2)
- 反射分布を考慮した鏡面反射の高速レンダリング(CG一般(3))(地理・地図・案内のための情報処理)
- おおばこの穂