On Unit Groups of Completely Primary Finite Rings
スポンサーリンク
概要
- 論文の詳細を見る
<p>Let R be a commutative completely primary finite ring with the unique maximal ideal J such that J3 = (0) and J2 ≠ (0): Then R⁄J ≅ GF(pr) and the characteristic of R is pk, where 1 ≤ k ≤ 3, forsome prime p and positive integers k, r. Let Ro = GR (pkr,pk) be a galois subring of R so that R = Ro ⊕ U ⊕ V ⊕ W, where U, V and W are finitely generated Ro-modules. Let non-negative integers s, t and be numbers of elements in the generating sets for U, V and W, respectively. In this work, we determine the structure of the subgroup 1+W of the unit group R* in general, and the structure of the unit group R* of R when s = 3, t = 1; ≥ 1 and characteristic of R is p. We then generalize the solution of the cases when s = 2, t = 1; t = s(s +1)⁄2 for a fixed s; for all the characteristics of R ; and when s = 2, t = 2, and characteristic of R is p to the case when the annihilator ann(J ) = J2 + W, so that ≥ 1. This complements the author's earlier solution of the problem in the case when the annihilator of the radical coincides with the square of the radical.</p>
論文 | ランダム
- 照明器具に搭載可能な制御装置を用いた分散制御型知的照明システムの構築
- 実オフィスに導入した知的照明システムにおける動作状況の可視化システム
- グラフのサイクル構造に着目したノードの重み均等化に関する特性 (回路とシステム)
- グラフのサイクル構造に着目したノードの重み均等化に関する特性 (システム数理と応用)
- 無線品質情報を用いた基地局連携負荷分散制御方式の検討 (無線通信システム)