INFINITE MATRICES ASSOCIATED WITH POWER SERIES AND APPLICATION TO OPTIMIZATION AND MATRIX TRANSFORMATIONS
スポンサーリンク
概要
- 論文の詳細を見る
<p>In this paper we first recall some properties of triangle Toeplitz matrices of the Banach algebra S<sub>r </sub> associated with power series. Then for boolean Toeplitz matrices M we explicitly calculate the product M<sup>N</sup> that gives the number of ways with N arcs associated with M. We compute the matrix B<sup>N</sup> (i, j), where B (i, j) is an infinite matrix whose the nonzero entries are on the diagonals m − n = i or m − n = j. Next among other things we consider the infinite booleanmatrix B<sup>+</sup><sub>∞</sub> that have infinitely many diagonals with nonzero entries and we explicitly calculate (B<sup>+</sup><sub>∞</sub>)<sup>N</sup>. Finally we give necessary and sufficient conditions for an infinite matrix M to map c (B<sup>N</sup> (i, 0)) to c.</p>
論文 | ランダム
- 天然染料による捺染
- 天然染料による捺染
- 村山大島紬と本場黄八丈の技術融合化
- 抜染による注染ゆかたの繊維劣化防止法
- Effects of Motion, Implied Direction and Displacement of a Large-Visual-Stimulus on Postural Control