ON GENERALIZED EPI-PROJECTIVE MODULES
スポンサーリンク
概要
- 論文の詳細を見る
<p>A module M is said to be generalized N-projective (or N-dual ojective) if, for any epimorphism g : N → X and any homomorphism f : M → X, there exist decompositions M = M<sub>1</sub> ⊕ M<sub>2</sub>, N = N<sub>1</sub> ⊕ N<sub>2</sub>, a homomorphism h<sub>1</sub> : M<sub>1</sub> → N<sub>1</sub> and an epimorphism h<sub>2</sub> : N<sub>2</sub> → M<sub>2</sub> such that g ◦ h<sub>1</sub> = f|<sub>M<sub>1</sub></sub> and f ◦ h<sub>2</sub> = g|<sub>N<sub>2</sub></sub> . This relative projectivity is very useful for the study on direct sums of lifting modules (cf. [5], [7]). In the definition, it should be noted that we may often consider the case when f to be an epimorphism. By this reason, in this paper we define relative (strongly) generalized epi-projective modules and show several results on this generalized epi-projectivity. We apply our results to the known problem when finite direct sums M<sub>1</sub>⊕· · ·⊕M<sub>n</sub> of lifting modules M<sub>i</sub> (i = 1, · · · , n) is lifting.</p>
論文 | ランダム
- 冬期学生農村住宅調査について
- わが国農村住宅の概観
- 鉛直荷重と繰返し水平力を受ける鋼構造架構の弾塑性性状に関する実験的研究
- 207 鉛直荷重と繰返し水平力を受ける鋼構造架構の弾塑性性状について(その1)(構造)
- ロ-カル・ガイド海外篇--パリ郊外印象派の旅