COMMUTATIVE GROUP ALGEBRAS OF ABELIAN GROUPS WITH UNCOUNTABLE POWERS AND LENGTHS
スポンサーリンク
概要
- 論文の詳細を見る
<p>Let F be a field of char(F) = p > 0 and G an abelian groupwith p-component G<sub>p</sub> of cardinality at most ℵ<sub>1</sub> and length at most ω<sub>1</sub>. The main affirmation on the Direct Factor Problem is that S(FG)/G<sub>p</sub> is totally projective whenever F is perfect. This extends results due to May (Contemp. Math., 1989) and Hill-Ullery (Proc. Amer. Math. Soc., 1990). As applications to the Isomorphism Problem, suppose that for any group H the F-isomorphism FH ≅ FG holds. Then if G<sub>p</sub> is totally projective, H<sub>p</sub> ≅ G<sub>p</sub>. This partially solves a problem posed by May (Proc. Amer. Math. Soc., 1988). In particular, H ≅ G provided G isp-mixed of torsion-free rank one so that G<sub>p</sub> is totally projective. The same isomorphism H ≅ G is fulfilled when G is p-local algebraically compact too. Besides if F<sub>p</sub> is the simple field with p-elements and G<sub>p</sub> F<sub>p</sub>H is a coproduct of torsion complete groups, F<sub>p</sub>H ≅ F<sub>p</sub>G as F<sub>p</sub> F<sub>p</sub>-algebras implies H<sub>p</sub> ≅ G<sub>p</sub>. This expands the central theorem obtained by us in (Rend. Sem. Mat. Univ. Padova, 1999) and partly settles the generalized version of a question raised by May (Proc. Amer. Math. Soc.,1979) as well. As a consequence, when G<sub>p</sub> is torsion complete and G is p-mixed of torsion-free rank one, H ≅ G. Moreover, if G is a coproduct of p-local algebraically compact groups then H ≅ G. The lastattainment enlarges an assertion of Beers-Richman-Walker (Rend. Sem. Mat. Univ. Padova, 1983).Each of the reported achievements strengthens our statements in this direction (Southeast Asian Bull. Math., 2001-2002) and also continues own studies in this aspect (Hokkaido Math. J., 2000) and (Kyungpook Math. J., 2004).</p>
論文 | ランダム
- 第3回イオン注入国際会議
- 11a-T-1 GaAs中のイオン注入不純物(Te およびSb)の格子位置
- 4a-M-5 フタロシアニンのレーザー励起光電導
- 30p-E-3 フタロシアニンの光伝導と電気伝導
- 並列計算によるDMRGの大規模シミュレーション手法 : 2次元モデルに対する動的DMRG法の並列化(京都大学基礎物理学研究所研究会 密度行列繰り込み群法を用いた物性研究の新展開,研究会報告)