Tyrolean Termination Tool
スポンサーリンク
概要
- 論文の詳細を見る
Proceedings of the 16th International Conference, RTA 2005, Nara, Japan, April 19-21, 2005.This paper describes the Tyrolean Termination Tool (T_<T>T in the sequel), the successor of the Tsukuba Termination Tool [12]. We describe the differences between the two and explain the new features, some of which are not (yet) available in any other termination tool, in some detail. T_<T>T is a tool for automatically proving termination of rewrite systems based on the dependency pair method of Arts and Giesl [3]. It produces high-quality output and has a convenient web interface. The tool is available at http://cl2-informatik.uibk.ac.at/ttt T_<T>T incorporates several new improvements to the dependency pair method. In addition, it is now possible to run the tool in fully automatic mode on a collection of rewrite systems. Moreover, besides ordinary (first-order) rewrite systems, the tool accepts simply-typed applicative rewrite systems which are transformed into ordinary rewrite systems by the recent method of Aoto and Yamada [2]. In the next section we describe the differences between the semi automatic mode and the Tsukuba Termination Tool. Section 3 describes the fully automatic mode. In Section 4 we show a termination proof of a simply-typed applicative system obtained by T_<T>T. In Section 5 we describe how to input a collection of rewrite systems and how to interpret the resulting output. Some implementation details are given in Section 6. The final section contains a short comparison with other tools for automatically proving termination.
- Springerの論文
- 2005-00-00
Springer | 論文
- Comparisons of germination traits of alpine plants between fellfield and snowbed habitats
- Photoreceptor Images of Normal Eyes and of Eyes with Macular Dystrophy Obtained In Vivo with an Adaptive Optics Fundus Camera
- Effect of Electrical Stimulation on IGF-1 Transcription by L-Type Calcium Channels in Cultured Retinal Muller Cells
- In Vivo Measurements of Cone Photoreceptor Spacing in Myopic Eyes from Images Obtained by an Adaptive Optics Fundus Camera
- Optical Quality of the Eye Degraded by Time-Varying Wavefront Aberrations with Tear Film Dynamics