Response of cellulase activity in pH-controlled cultures of the filamentous fungus Acremonium cellulolyticus.
スポンサーリンク
概要
- 論文の詳細を見る
Cellulase production was investigated in pH-controlled cultures of Acremonium cellulolyticus. The response to culture pH was investigated for three cellulolytic enzymes, carbomethyl cellulase (CMCase), avicelase, and beta-glucosidase. Avicelase and beta-glucosidase showed similar profiles, with maximum activity in cultures at pH 5.5-6. The CMCase activity was highest in a pH 4 culture. At an acidic pH, the ratios of CMCase and avicelase activity to cellulase activity defined by filter paper unit were high, but at a neutral pH, the beta-glucosidase ratio was high. The pH 6.0 culture showed the highest cellulase activity within the range of pH 3.5-6.5 cultures. The saccharification activity from A. cellulolyticus was compared to those of the cellulolytic enzymes from other species. The A. cellulolyticus culture broth had a saccharification yield comparable to those of the Trichoderma enzymes GC220 and Cellulosin T2, under conditions with the same cellulase activity. The saccharification yields from Solka floc, Avicel, and waste paper, measured as the percent of released reducing sugar to dried substrate, were greater than 80% after 96 h of reaction. The yields were 16% from carboxymethylcellulose and 26% from wood chip refiner. Thus, the A. cellulolyticus enzymes were suitable for converting cellulolytic biomass to reducing sugars for biomass ethanol production. This study is a step toward the establishment of an efficient system to reutilize cellulolytic biomass.
論文 | ランダム
- Sub-100nm MOSFETにおけるソース/ドレイン電荷分配に対する弾道輸送キャリアの寄与
- 715 モアレ干渉法による電子パッケージの熱変形計測
- 437 耐衝撃性ポリスチレンの力学的性質に及ぼすゴム粒子径とひずみ速度の影響
- Sub-100nm MOSFETにおけるソース/ドレイン電荷分配に対する弾道輸送キャリアの寄与
- 124 ABS 樹脂の破壊靱性評価 : ゴム含有率の影響