Fat accumulation in Caenorhabditis elegans is mediated by SREBP homolog SBP-1
スポンサーリンク
概要
- 論文の詳細を見る
Research into the metabolism of fats may reveal potential targets for developing pharmaceutical approaches to obesity and related disorders. Such research may be limited, however, by the cost and time involved in using mammalian subjects or developing suitable cell lines. To determine whether invertebrates could be used to carry out such research more efficiently, we investigated the ability of Caenorhabditis elegans (C. elegans) to accumulate body fat following the consumption of excess calories and the mechanisms it uses to metabolize fat. C. elegans worms were grown on media containing various sugars and monitored for changes in body fat and expression of sbp-1, a homolog of the mammalian transcription factor SREBP-1c, which facilitates fat storage in mammals. The fat content increased markedly in worms exposed to glucose. In situ analysis of gene expression in transgenic worms carrying the GFP-labeled promoter region of sbp-1 revealed that sbp-1 mRNA was strongly expressed in the intestine. An sbp-1 knockdown caused a reduction in body size, fat storage, and egg-laying activity. RT-PCR analysis revealed a considerable decrease in the expression of fatty acid synthetic genes (including elo-2, fat-2, and fat-5) and a considerable increase of starvation-inducible gene acs-2. Normal egg-laying activity and acs-2 expression were restored on exposure to a polyunsaturated fatty acid. These findings suggest that SBP-1 and SREBP regulate the amount and composition of fat and response to starvation in a similar manner. Thus, C. elegans may be an appropriate subject for studying the metabolism of fats.
論文 | ランダム
- 編集長インタビュー 日本モンサント(株)代表取締役社長 山根精一郎
- Thermal Behavior along Depth of Extreme Ultraviolet Lithography Mask during Dry Etching : Surfaces, Interfaces, and Films
- Temperature Rise of Extreme Ultraviolet Lithography Mask Substrate during Dry Etching Process : Semiconductors
- Estimation of Extreme Ultraviolet Power and Throughput for Extreme Ultraviolet Lithography
- Theoretical Analysis of Placement Error due to Absorber Pattern on Extreme Ultraviolet Lithography Mask