Forward and inverse scattering on manifolds with asymptotically cylindrical ends
スポンサーリンク
概要
- 論文の詳細を見る
We study an inverse problem for a non-compact Riemannian manifold whose ends have the following properties: On each end, the Riemannian metric is assumed to be a short-range perturbation of the metric of the form (dy)2+h(x,dx), h(x,dx) being the metric of some compact manifold of codimension 1. Moreover one end is exactly cylindrical, i.e. the metric is equal to (dy)2+h(x,dx). Given two such manifolds having the same scattering matrix on that exactly cylindrical end for all energies, we show that these two manifolds are isometric.
論文 | ランダム
- 光配向技術を使った位相差フィルムと偏光フィルム (特集1 高輝度化にむけたLCD材料の開発と光マネージメント技術)
- 脱毛を伴う全身性疾患
- 巻頭記
- 血行障害 : 発症, 病理, 臨床
- 血管炎の診断と治療