Forward and inverse scattering on manifolds with asymptotically cylindrical ends
スポンサーリンク
概要
- 論文の詳細を見る
We study an inverse problem for a non-compact Riemannian manifold whose ends have the following properties: On each end, the Riemannian metric is assumed to be a short-range perturbation of the metric of the form (dy)2+h(x,dx), h(x,dx) being the metric of some compact manifold of codimension 1. Moreover one end is exactly cylindrical, i.e. the metric is equal to (dy)2+h(x,dx). Given two such manifolds having the same scattering matrix on that exactly cylindrical end for all energies, we show that these two manifolds are isometric.
論文 | ランダム
- 北魏永固陵の造営
- 「銀雀山簡『市法』講疏」李学勤 (秦漢簡牘論文集/甘粛省文物考古研究所編(1988))
- 「居延漢簡所見的市」徐楽尭 (秦漢簡牘論文集/甘粛省文物考古研究所編(1988))
- 『流沙墜簡』の版本調査
- 日本における漢代官僚制研究