Forward and inverse scattering on manifolds with asymptotically cylindrical ends
スポンサーリンク
概要
- 論文の詳細を見る
We study an inverse problem for a non-compact Riemannian manifold whose ends have the following properties: On each end, the Riemannian metric is assumed to be a short-range perturbation of the metric of the form (dy)2+h(x,dx), h(x,dx) being the metric of some compact manifold of codimension 1. Moreover one end is exactly cylindrical, i.e. the metric is equal to (dy)2+h(x,dx). Given two such manifolds having the same scattering matrix on that exactly cylindrical end for all energies, we show that these two manifolds are isometric.
論文 | ランダム
- 2・3の熱水性鉱床変質帯における微量元素
- Transcriptional regulation of the retinoic acid receptor in the dorsal midline epidermis in the Ciona intestinalis embryo
- モンゴル国経済改革を考える
- 2・3の黒鉱々床変質帯における微量元素の地球化学的様相
- モンゴル国の金融改革についての一考察