NONLINEAR REGRESSION MODELING VIA REGULARIZED GAUSSIAN BASIS FUNCTIONS
スポンサーリンク
概要
- 論文の詳細を見る
Nonlinear regression modeling based on basis expansions has been widely used to explore data with complex structure. There are various types of basis functions to capture complex nonlinear phenomena. In this paper we introduce nonlinear regression models with Gaussian basis functions, for which new Gaussian bases are constructed, taking advantages of $ B $-spline bases. In order to choose adjusted parameters, we derive model selection and evaluation criteria from information-theoretic and Bayesian viewpoints. Monte Carlo simulations and real data analysis show that our proposed modeling strategy performs well in various situations.
論文 | ランダム
- 薄肉開き断面柱の断面変形による弾性分岐座屈
- 薄肉開き断面部材の断面変形 : 多自由度断面変形の場合
- 薄肉開き断面部材の断面変形 : 一自由度断面変形・一軸対称断面の場合
- 薄肉開き断面部材の断面変形(distortion) : 1自由度断面変形・一軸対称断面の場合
- 非定常遷音速翼列流れの高解像差分スキーム(日本ガスタービン学会賞(第8回)報告)