Sets of finite perimeter and the Hausdorff-Gauss measure on the Wiener space
スポンサーリンク
概要
- 論文の詳細を見る
In Euclidean space, the integration by parts formula for a set of finite perimeter is expressed by the integration with respect to a type of surface measure. According to geometric measure theory, this surface measure is realized by the one-codimensional Hausdorff measure restricted on the reduced boundary and/or the measure-theoretic boundary, which may be strictly smaller than the topological boundary. In this paper, we discuss the counterpart of this measure in the abstract Wiener space, which is a typical infinite-dimensional space. We introduce the concept of the measure-theoretic boundary in the Wiener space and provide the integration by parts formula for sets of finite perimeter. The formula is presented in terms of the integration with respect to the one-codimensional Hausdorff-Gauss measure restricted on the measure-theoretic boundary.
- 2010-03-01
論文 | ランダム
- P-70 血漿中のアミノ酸プロファイルを用いた肺癌スクリーニングの可能性に関する検討(腫瘍マーカー2,第49回日本肺癌学会総会号)
- O-138 進行非小細胞肺癌に対するエルロチニブ投与症例の検討(分子標的治療3,第49回日本肺癌学会総会号)
- W2-1 気管支鏡サンプルによる遺伝子変異検出方法の検討(肺がんにおける内視鏡下での分子生物学的アプローチ,ワークショップ2,第31回日本呼吸器内視鏡学会学術集会)
- 56.末梢型扁平上皮癌の細胞像(第87回日本肺癌学会関西支部会,関西支部,支部活動)
- 転移・合併症対策 肺癌に伴うエマージェンシー (肺癌--基礎・臨床研究のアップデート) -- (臨床研究 治療)