Sets of finite perimeter and the Hausdorff-Gauss measure on the Wiener space
スポンサーリンク
概要
- 論文の詳細を見る
In Euclidean space, the integration by parts formula for a set of finite perimeter is expressed by the integration with respect to a type of surface measure. According to geometric measure theory, this surface measure is realized by the one-codimensional Hausdorff measure restricted on the reduced boundary and/or the measure-theoretic boundary, which may be strictly smaller than the topological boundary. In this paper, we discuss the counterpart of this measure in the abstract Wiener space, which is a typical infinite-dimensional space. We introduce the concept of the measure-theoretic boundary in the Wiener space and provide the integration by parts formula for sets of finite perimeter. The formula is presented in terms of the integration with respect to the one-codimensional Hausdorff-Gauss measure restricted on the measure-theoretic boundary.
- 2010-03-01
論文 | ランダム
- 5a-D-8 4π-R.E.B.集束法による大電流密度イオンビームの発生
- 植物着抜染技法の発色見本
- 13p-G-1 中性粒子入射のためのイオン源の試作
- ガラス・バーナー・ワークの補助器具 : ガラス・ロッド予熱台とマンドレル支持アームの制作
- 木工デザインのクラシカル・エレメント(2) : ダブル・バラスター脚のウィンザー・スタンド