Sets of finite perimeter and the Hausdorff-Gauss measure on the Wiener space
スポンサーリンク
概要
- 論文の詳細を見る
In Euclidean space, the integration by parts formula for a set of finite perimeter is expressed by the integration with respect to a type of surface measure. According to geometric measure theory, this surface measure is realized by the one-codimensional Hausdorff measure restricted on the reduced boundary and/or the measure-theoretic boundary, which may be strictly smaller than the topological boundary. In this paper, we discuss the counterpart of this measure in the abstract Wiener space, which is a typical infinite-dimensional space. We introduce the concept of the measure-theoretic boundary in the Wiener space and provide the integration by parts formula for sets of finite perimeter. The formula is presented in terms of the integration with respect to the one-codimensional Hausdorff-Gauss measure restricted on the measure-theoretic boundary.
- 2010-03-01
論文 | ランダム
- 大学院生によるアメリカの小中学校での体験型海外教育実地研究報告IV
- 1030 保育所における自閉症児の愛着行動について : H式自閉性障害幼児評定尺度「HRSH」による(自閉症,障害4,障害)
- 864 発達遅滞児の対人関係障害と自閉症児 : 「対人関係行動評定尺度」および「身辺処理能力尺度」による(臨床・障害7,臨床・障害)
- 917 保育所における自閉症児の発達的研究(臨床・障害3 障害児保育,研究発表)
- 968 幼児の対人関係障害 : 対人関係行動チェックリストによる(臨床・障害8,研究発表)