Sets of finite perimeter and the Hausdorff-Gauss measure on the Wiener space
スポンサーリンク
概要
- 論文の詳細を見る
In Euclidean space, the integration by parts formula for a set of finite perimeter is expressed by the integration with respect to a type of surface measure. According to geometric measure theory, this surface measure is realized by the one-codimensional Hausdorff measure restricted on the reduced boundary and/or the measure-theoretic boundary, which may be strictly smaller than the topological boundary. In this paper, we discuss the counterpart of this measure in the abstract Wiener space, which is a typical infinite-dimensional space. We introduce the concept of the measure-theoretic boundary in the Wiener space and provide the integration by parts formula for sets of finite perimeter. The formula is presented in terms of the integration with respect to the one-codimensional Hausdorff-Gauss measure restricted on the measure-theoretic boundary.
- 2010-03-01
論文 | ランダム
- 山崎弁護士の判例を実務に活かせ--過労自殺に対する労災認定--大町労基署長事件から
- 脳卒中片麻痺慢性期におけるプラスティック短下肢装具
- 230. 歩行訓練ロボット : 重複障害例に対する有用性の検討
- 電気刺激による痙性の抑制とその評価(1部 神経・筋・制御)
- 168. 頸髄損傷にみられる痙性の臨床像