Runge-Kutta-Mersonによる常微分方程式の数値的解法
スポンサーリンク
概要
- 論文の詳細を見る
常微分方程式を数値的に解く方法として,最もよく用いられるのはRunge-Kutta法である.しかし,微分方程式の形が複雑であったり,函数自身に不連続点が存在するような場合には,ふつうのRunge-Kutta法では解けないことがある.Mersonは最近,Runge-Kutta法を改良し,初めに設定された許容誤差(tolerance)にもとづいて各点における積分区間の幅を自動的に制御できる方法を提案した.OKITAC-5090電子計算機のためのこの方法を用いた積分ルチーンを説明し,それを用いて解いた二三の例をあげてみよう.
- 東京大学生産技術研究所,Institute of Industrial Science. University of Tokyo,東京大学生産技術研究所 天体物理学 |Institute of Industrial Science. University of Tokyoの論文