Cohomotopy invariants and the universal cohomotopy invariant jump formula
スポンサーリンク
概要
- 論文の詳細を見る
Starting from ideas of Furuta, we develop a general formalism for the construction of cohomotopy invariants associated with a certain class of $S^1$-equivariant non-linear maps between Hilbert bundles. Applied to the Seiberg-Witten map, this formalism yields a new class of cohomotopy Seiberg-Witten invariants which have clear functorial properties with respect to diffeomorphisms of 4-manifolds. Our invariants and the Bauer-Furuta classes are directly comparable for 4-manifolds with $b_1=0$; they are equivalent when $b_1=0$ and $b_+>1$, but are finer in the case $b_1=0$, $b_+=1$ (they detect the wall-crossing phenomena). We study fundamental properties of the new invariants in a very general framework. In particular we prove a universal cohomotopy invariant jump formula and a multiplicative property. The formalism applies to other gauge theoretical problems, e.g. to the theory of gauge theoretical (Hamiltonian) Gromov-Witten invariants
- Graduate School of Mathematical Sciences, The University of Tokyoの論文
- 2008-12-22
Graduate School of Mathematical Sciences, The University of Tokyo | 論文
- On the $\SU$ representation space of the Brieskorn homology spheres
- Massera criterion for linear functional equations in a framework of hyperfunctions
- Twining Character Formula of Borel-Weil-Bott Type
- Classification of log del~Pezzo surfaces of index two
- 2-spheres of square -1 and the geography of genus-2 Lefschetz fibrations