CONTACT RIEMANNIAN MANIFOLDS SATISFYING $R(¥xi,X)¥cdot R=0$ AND $¥xi¥in(k,¥mu)$ -NULLITY DISTRIBUTION
スポンサーリンク
概要
- 論文の詳細を見る
This paper deals with a classiffication of the semisymmetric contact metric manifolds, and the contact manifolds satisfying $R(¥xi, X)¥cdot S=0$, where $S$ is the Ricci tensor, under the condition that the characteristic vector field $¥xi$ belongs to the $(k, ¥mu)$ -nullity distribution.
- Yokohama City Universityの論文
Yokohama City University | 論文
- STABILITY OF CONSTANT MEAN CURVATURE SURFACES IN RIEMANNIAN 3-SPACE FORM
- THREE-POINT BOUNDARY VALUE PROBLEMS-EXISTENCE AND UNIQUENESS
- ON CONDITIONS ON X SUCH THAT XAX* IS HERMITIAN
- A NOTE ON MALMQUIST'S THEOREM ON FIRST-ORDER DIFFERENTIAL EQUATIONS
- FURTHER RESULTS ON COMMON RIGHT FACTORS