AN LIL FOR RANDOM WALKS WITH TIME STATIONARY RANDOM DISTRIBUTION FUNCTION
スポンサーリンク
概要
- 論文の詳細を見る
"Let $¥mathcal{F}$ be a family of distribution functions and let $¥nu$ be a stationary ergodic probability measure on $¥mathcal{F}_{1}^{¥infty}=¥prod_{i=1}^{¥infty}¥mathcal{F}$ of copies of $¥mathcal{F}$ . Now for each $¥omega=$ $(F_{1}^{¥omega}, F_{2}^{¥omega}, ¥cdots)¥in ¥mathcal{F}_{1}^{¥infty}$ , we define a probability measure $P_{¥omega}$ on $(R_{1}^{¥infty}, B_{1}^{¥infty})$ so that $P_{¥omega}=¥prod_{¥ell=1}^{¥infty}¥mathcal{F}_{¥ell}^{¥omega}$ , Let $X_{n}$ ; $R_{1}^{¥infty}¥rightarrow R$ be the coordinate functions $X_{n}(x)=x_{n},$ $x=$ $(x_{n})$ . In this paper we study LIL for partial sums of $¥{X_{n}¥}$ with respect to $P_{¥omega}$ and as a special case of above model we also study LIL for interchangeable process."
- Yokohama City Universityの論文
- 1993-00-00
Yokohama City University | 論文
- STABILITY OF CONSTANT MEAN CURVATURE SURFACES IN RIEMANNIAN 3-SPACE FORM
- THREE-POINT BOUNDARY VALUE PROBLEMS-EXISTENCE AND UNIQUENESS
- ON CONDITIONS ON X SUCH THAT XAX* IS HERMITIAN
- A NOTE ON MALMQUIST'S THEOREM ON FIRST-ORDER DIFFERENTIAL EQUATIONS
- FURTHER RESULTS ON COMMON RIGHT FACTORS