ON CONNES SPECTRUM $¥Gamma$ OF A TENSOR PRODUCT OF ACTIONS ON VON NEUMANN ALGEBRAS
スポンサーリンク
概要
- 論文の詳細を見る
"Let $¥alpha^{j}(j-1,2)$ be actions of a locally compact abelian group $G$ on von Neumann algebras $¥vee¥nearrow¥swarrow_{j}$ satisfying $¥alpha_{j}(¥ovalbox{¥tt¥small REJECT}_{j})^{¥prime}¥cap(_{c_{¥wedge}}¥ovalbox{¥tt¥small REJECT}_{j}¥times¥alpha jG)=¥tau_{¥ovalbox{¥tt¥small REJECT}_{j^{¥times}¥alpha^{j^{G}}}}^{p},$ . $1f$ $(¥alpha^{1}¥otimes¥alpha^{2})_{t}=¥alpha_{t}^{1}¥otimes¥alpha_{t}^{2}$ , then $¥Gamma(¥alpha^{1}¥otimes¥alpha^{2})$ is the set of all $p¥in G$ such that $¥alpha_{p}^{1}¥otimes¥ell$ is trivial on the fixed point algebra of the center of $(¥ovalbox{¥tt¥small REJECT}_{1}¥times¥alpha^{1}G)¥otimes^{-}(¥leftarrow¥ovalbox{¥tt¥small REJECT}_{2}¥times¥alpha^{2}G)$ with respect to the action $¥hat{¥alpha}_{p}=¥hat{¥alpha}_{p}^{1}¥otimes¥hat{¥alpha}_{-p}^{2}$ . Let $¥beta^{j}(j=1,2)$ be ergodic actions of $G$ on von Neumann algebras $¥vee¥phi_{j}^{¥prime}$ . If $H^{2}(G, ¥mathbb{T})=¥{0¥}$ and both $¥beta^{1}$ and $¥beta^{2}$ have invariant faithful normal states, then $(¥leftrightarrow.r_{1}¥otimes_{c}¥Lambda_{2}^{¥wedge})^{¥beta}-$ is abelian, where $¥beta_{t}=¥beta_{t}^{1}¥otimes¥beta_{-t}^{2}$ ."
- Yokohama City Universityの論文
- 1978-00-00
Yokohama City University | 論文
- STABILITY OF CONSTANT MEAN CURVATURE SURFACES IN RIEMANNIAN 3-SPACE FORM
- THREE-POINT BOUNDARY VALUE PROBLEMS-EXISTENCE AND UNIQUENESS
- ON CONDITIONS ON X SUCH THAT XAX* IS HERMITIAN
- A NOTE ON MALMQUIST'S THEOREM ON FIRST-ORDER DIFFERENTIAL EQUATIONS
- FURTHER RESULTS ON COMMON RIGHT FACTORS