Studies on monodromy preserving deformation of linear differential equations on elliptic curves
スポンサーリンク
概要
- 論文の詳細を見る
We study a monodromy preserving deformation (MPD) of linear differential equations on elliptic curves. As the first of our results, we describe asymptotic behaviors of solutions to the MPD system when the elliptic curve degenerates to a rational curve. As the second, we find explicit solutions for special values of parameters where the MPD system is linearizable. Our solutions are written in terms of integrals of theta functions. We also show that they converge to the hypergeometric functions applying the above asymptotic formula when the elliptic curve degenerates to a rational curve.
論文 | ランダム
- 情報機器用の固体発光素子(特集情報機器光源システムの現状と動向)
- 職業運転手(タクシ-)の疲労時における視機能について--特に両眼視機能の立場から (第30回日本臨床眼科学会講演集-4-)
- 斜視・弱視(Group Discussion)
- 弱視の治療経験および弱視の定義について
- 「短歌無内容論」に触れて (短歌 その器を充たすもの)