経路選択行動のday-to-dayダイナミクスと交通ネットワーク均衡の形成プロセス
スポンサーリンク
概要
- 論文の詳細を見る
In this study, we assume that each driver under day-to-day dynamic transportation circumstances chooses a route based on Bayesian learning, and develop a day-to-day dynamical model of network flow. It is found in this model that the driver with Bayesian learning chooses the route which has the minimum travel time the most frequently. Furthermore, we find that an equilibrium point of the day-to-day dynamical model is identical to the Wardrop's equilibrium, and the Wardrop's equilibrium is globally asymptotically stable if initial recognition among drivers is dispersed widely, and the day-to-day dynamical system always converges to the Wordrop's equilibrium.
論文 | ランダム
- 重症心身障害者の歯肉増殖に影響を及ぼす要因の検討 : 歯周病関連細菌について
- 本学小児歯科の知的障害児・者に対する行動調整の経年的推移
- 重症心身障害者の歯肉増殖に影響を及ぼす要因の検討 : 第1報 フェニトインとバルプロ酸との関連
- 歯科診療の尿中ストレスホルモンの変動 : アドレナリンと17-OHCS
- 重症心身障害者の口腔内所見 : 歯周病の臨床的所見の年齢別推移