Minimum augmentation of edge-connectivity between vertices and sets of vertices in undirected graphs
スポンサーリンク
概要
- 論文の詳細を見る
Given an undirected multigraph G=(V,E), a family $\mathcal{W}$ of areas W⊆V, and a target connectivity k≥1, we consider the problem of augmenting G by the smallest number of new edges so that the resulting graph has at least k edge-disjoint paths between v and W for every pair of a vertex v∈V and an area $W\in \mathcal{W}$ . So far this problem was shown to be NP-complete in the case of k=1 and polynomially solvable in the case of k=2. In this paper, we show that the problem for k≥3 can be solved in O(m+n(k 3+n 2)(p+kn+nlog n)log k+pkn 3log (n/k)) time, where n=|V|, m=|{{u,v}|(u,v)∈E}|, and $p=|\mathcal{W}|$
- 2008-03-15
論文 | ランダム
- 十七日間のカラチ滞在
- イード・イブとなった訪問
- 353 高齢者の介護予防教室への参加・不参加要因に関する研究(生活環境支援系理学療法2, 第42回日本理学療法学術大会)
- 荒木千里記念脳外科症例検討研究会記録(264)痙攣で発症したmeningioangiomatosisの一例
- 口唇裂・口蓋裂をもつ子供の母親の次子妊娠・出産への支援の現状(川崎医療福祉学会第35回研究集会)