A dynamic model of darkness tolerance for phytoplankton: model description
スポンサーリンク
概要
- 論文の詳細を見る
To analyze various effects of prolonged darkness on phytoplankton population dynamics, we developed a dynamic model of darkness tolerance for phytoplankton and investigated its characteristics. To construct the basic concepts of the model, we categorized various changes in abundance of phytoplankton both during prolonged darkness and after reillumination into several patterns, and then considered the physiological processes producing these patterns. The nature of darkness tolerance was considered to incorporate previously experienced light conditions, including darkness, as a physiological activity, and members of the same phytoplankton species exhibit different dynamics even in identical light conditions due to such career effects. Taking this into consideration, we developed a cell quota model in relation to darkness tolerance. State variables for abundance were indicated by cell numbers, and physiological condition by three intracellular carbon pools with different physiological functions. Using our model, we analyzed the various changes in abundance of phytoplankton in relation to exposure to prolonged darkness. Various responses in terms of phytoplankton abundance to prolonged darkness and after reillumination were successfully reproduced by the model that simply assumed that deterioration of physiological mechanics, such as photosynthetic functions, was due to a prolonged dark condition. On the basis of the results of calculation and assumptions for the model, we discuss the limitations, problems, and effectiveness of the model.