Self-organizing Rhythmic Patterns with Spatio-temporal spikes in Class I and Class II Neural Networks
スポンサーリンク
概要
- 論文の詳細を見る
The original publication is available at http://www.springerlink.com/content/1554603k38814041/Regularly spiking neurons are classified into two categories, Class I and Class II, by their firing properties for constant inputs. To investigate how the firing properties of single neurons affect to ensemble rhythmic activities in neural networks, we constructed different types of neural networks whose excitatory neurons are the Class I neurons or the Class II neurons. The networks were driven by random inputs and developed with STDP learning. As a result, the Class I and the Class II neural networks generate different types of rhythmic activities: the Class I neural network generates slow rhythmic activities, and the Class II neural network generates fast rhythmic activities.
論文 | ランダム
- マルチビームアンテナ送信を用いた下りリンク共通制御チャネル送信法の特性評価
- HSDPAにおける適応変復調・チャネル符号化を用いたときのマルチパス干渉キャンセラの室内実験結果
- 24aPS-13 RFスパッタリング法による秩序型ペロブスカイトMn酸化物の薄膜作製(24aPS 領域8ポスターセッション(低温II(Mn・Co・Ru化合物など,パイロクロア)),領域8(強相関系:高温超伝導,強相関f電子系など))
- 22634 H形鋼筋違端部の補強構法の開発(耐震補強(2),構造III)
- 110)解離性大動脈瘤の経過観察中に発症した原発性マクログロブリン血症の1例 : 日本循環器学会第70回東海地方会