Self-organizing Rhythmic Patterns with Spatio-temporal spikes in Class I and Class II Neural Networks
スポンサーリンク
概要
- 論文の詳細を見る
The original publication is available at http://www.springerlink.com/content/1554603k38814041/Regularly spiking neurons are classified into two categories, Class I and Class II, by their firing properties for constant inputs. To investigate how the firing properties of single neurons affect to ensemble rhythmic activities in neural networks, we constructed different types of neural networks whose excitatory neurons are the Class I neurons or the Class II neurons. The networks were driven by random inputs and developed with STDP learning. As a result, the Class I and the Class II neural networks generate different types of rhythmic activities: the Class I neural network generates slow rhythmic activities, and the Class II neural network generates fast rhythmic activities.
論文 | ランダム
- G.F.Hourani著「印度洋におけるアラブ海運」
- 第一次世界大戦時における社外船経営の発展と変貌
- 沖縄本島石川市における蚊族の調査成績, 特に冬期におけるコガタアカイエカの消長について(第 23 回大会講演要旨)
- 沖縄本島に於ける日本脳炎の疫学と関連した,蚊族の吸血嗜好性並びに季節的消長に関する研究
- 蚊族幼虫の定量的採集法の一改良案