Regularized functional regression modeling for functional response and predictors
スポンサーリンク
概要
- 論文の詳細を見る
MI: Global COE Program Education-and-Research Hub for Mathematics-for-IndustryグローバルCOEプログラム「マス・フォア・インダストリ教育研究拠点」We consider the problem of constructing a functional regression modeling with functional predictors and a functional response. Discretely observed data for each individual are expressed as a smooth function, using Gaussian basis functions. The functional regression model is estimated by the maximum penalized likelihood method, assuming that the coefficient parameters are transformed into a functional form. A crucial issue in constructing functional regression models is the selection of regularization parameters involved in the regularization method. We derive informationtheoretic and Bayesian model selection criteria for evaluating the estimated model. Monte Carlo simulations and real data analysis are conducted to examine the performance of our functional regression modeling strategy.
- 2009-04-08
論文 | ランダム
- 慢性関節リウマチ,シェ-グレン症候群 (慢性疾患療養指導指針--膠原病)
- 今どきの医療(新連載・第1回)重症肥満を外科手術で治す
- キヌタ骨長脚欠損を伴う耳小骨奇形に対するアブミ骨手術の検討
- 人工耳小骨を用いた鼓室形成術
- 顔面神経走行異常を伴った耳小骨奇形症例