Regularized functional regression modeling for functional response and predictors
スポンサーリンク
概要
- 論文の詳細を見る
MI: Global COE Program Education-and-Research Hub for Mathematics-for-IndustryグローバルCOEプログラム「マス・フォア・インダストリ教育研究拠点」We consider the problem of constructing a functional regression modeling with functional predictors and a functional response. Discretely observed data for each individual are expressed as a smooth function, using Gaussian basis functions. The functional regression model is estimated by the maximum penalized likelihood method, assuming that the coefficient parameters are transformed into a functional form. A crucial issue in constructing functional regression models is the selection of regularization parameters involved in the regularization method. We derive informationtheoretic and Bayesian model selection criteria for evaluating the estimated model. Monte Carlo simulations and real data analysis are conducted to examine the performance of our functional regression modeling strategy.
- 2009-04-08
論文 | ランダム
- 東日本大震災による産業界への影響
- 東日本大震災の計量モデル分析--夏の電力不足・消費萎縮・復興需要の3側面から (特集 東日本大震災)
- 東日本大震災による我が国経済への影響--被害と復興が経済に与える影響の整理 (特集 東日本大震災)
- 特集 東日本大震災
- 「東日本大震災」塩害現地調査団報告(速報)