COMBINATORY LOGIC AND $ \lambda $-CALCULUS FOR CLASSICAL LOGIC
スポンサーリンク
概要
- 論文の詳細を見る
Since Griffin's work in 1990, classical logic has been an attractive target for extracting computational contents. However, the classical principle used in Griffin's type system is the double-negation-elimination rule, which prevents one to analyze the intuitionistic part and the purely classical part separately. By formulating a calculus with $ \mathrm{J} $ (for the elimination rule of falsehood) and $ \mathrm{P} $ (for Peirce formula which is concerned with purely classical reasoning) combinators, we can separate these two parts. This paper studies the $ \lambda \mathrm{PJ} $ calculus with $ \mathrm{P} $ and $ \mathrm{J} $ combinators and the $ \lambda \mathrm{C} $ calculus with $ \mathrm{C} $ combinator(for the double-negation-elimination rule). We also propose two $ \lambda $-calculi which correspond to $ \lambda \mathrm{PJ} $ and $ \lambda \mathrm{C} $. We give four classes of reduction rules for each calculus, and systematically study their relationship by simulating reduction rules in one calculus by the corresponding one in the other. It is shown that, by restricting the type of $ P $, simulation succeeds for several choices of reduction rules, but that simulating the full calculus $ \lambda \mathrm{PJ} $ in $ \lambda \mathrm{C} $ succeeds only for one class. Some programming examples of our calculi such as encoding of conjunction and disjunction are also given.
論文 | ランダム
- 現場を訪ねて : 平成9年度地盤工学会中部支部見学会
- 「筑波研究学園都市敷地条例」の運用実態 (昭和60年度日本都市計画学会学術研究論文集(4))
- 住環境のとらえ方--評価マニュアルの適用例
- 4. 音声による本人認証 : 第2部 話者認証システム (ここまできたバイオメトリクスによる本人認証システム)
- 電子ビ-ム加工機 (加工機特集)