Spin Incommensurability and Two Phase Competition in Cobaltites
スポンサーリンク
概要
- 論文の詳細を見る
The perovskite LaCoO3 evolves from a nonmagnetic Mott insulator to a spin cluster ferromagnet (FM) with the substitution of Sr2+ for La3+ in La1-xSrxCoO3. The clusters increase in size and number with x and the charge percolation through the clusters leads to a metallic state. Using elastic neutron scattering on La1-xSrxCoO3 single crystals, we show that an incommensurate spin superstructure coexists with the FM spin clusters. The incommensurability increases continuously with x, with the intensity rising in the insulating phase and dropping in the metallic phase as it directly competes with the commensurate FM, itinerant clusters. The spin incommensurability arises from local order of Co3+-Co4+ clusters but no long-range static or dynamic spin stripes develop. The coexistence and competition of the two magnetic phases explain the residual resistivity at low temperatures in samples with metalliclike transport.
- The American Physical Societyの論文
The American Physical Society | 論文
- First-principles calculations of the geometry and electronic structure of electron- and hole-doped C60 in the field-effect transistor structure
- Superconducting characteristics in electron-doped layered hafnium nitride : 15N isotope effect studies
- Unconventional Superconductivity in Electron-Doped Layered Li0.48(THF)yHfNCl
- Electrical-resistivity and low-temperature specific-heat measurements of single crystals of thiospinel CuV2S4
- Kaon B Parameter from Quenched Lattice QCD