Perpetuality and uniform normalization
スポンサーリンク
概要
- 論文の詳細を見る
We define a perpetual one-step reduction strategy which enables one to construct minimal (w.r.t. Levy's ordering LeftTriangleEqual on reductions) infinite reductions in Conditional Orthogonal Expression Reduction Systems. We use this strategy to derive two characterizations of perpetual redexes, i.e., redexes whose contractions retain the existence of infinite reductions. These characterizations generalize existing related criteria for perpetuality of redexes. We give a number of applications of our results, demonstrating their usefulness. In particular, we prove equivalence of weak and strong normalization (the uniform normalization property) for various restricted λ-calculi, which cannot be derived from previously known perpetuality criteria.
- Springerの論文
- 1997-00-00
Springer | 論文
- Comparisons of germination traits of alpine plants between fellfield and snowbed habitats
- Photoreceptor Images of Normal Eyes and of Eyes with Macular Dystrophy Obtained In Vivo with an Adaptive Optics Fundus Camera
- Effect of Electrical Stimulation on IGF-1 Transcription by L-Type Calcium Channels in Cultured Retinal Muller Cells
- In Vivo Measurements of Cone Photoreceptor Spacing in Myopic Eyes from Images Obtained by an Adaptive Optics Fundus Camera
- Optical Quality of the Eye Degraded by Time-Varying Wavefront Aberrations with Tear Film Dynamics