Fragment distribution of thermal decomposition for PS and PET with QMD calculations by considering the excited and charged model molecules
スポンサーリンク
概要
- 論文の詳細を見る
Simulations by a quantum molecular dynamics (QMD) (MD with MO) method were demonstrated on the thermal decomposition of PS and PET polymers using the model molecules at the ground state including excited and positive charged states. For the excited and positive charged model molecules, we adopted CH3CHC6H5CH3 and CH3OCOC6H4COOCH3 of PS and PET monomers, respectively at the singlet and triplet states in single excitation, and at (+2) positive charged state by semiempirical AM1 MO method. Geometry and energy optimized results of the excited and positive charged models by MO calculations were used as the initial MD step of QMD calculations. In the QMD calculations, we controlled the total energy of the system using Nosé-Hoover thermostats in the total energy range of 0.69-0.95 eV, and the sampling position data with a time step of 0.5 fs were carried out up to 5000 steps at 60 different initial conditions. The calculated neutral, positive and negative charged fragment distributions of PS and PET models with 0.82 eV energy control were obtained as (93.5, 2.3, and 4.3%), and (87.8, 5.3, and 6.9%) to the total fragments, respectively. The ratios seem to correspond well to the values observed experimentally in SIMS. Crown Copyright © 2008.
- Elsevier BVの論文
- 2008-12-15
Elsevier BV | 論文
- A case with tracheo-innominate artery fistula. Successful management of endovascular embolization of innominate artery.
- Virological effects and safety of combined double filtration plasmapheresis (DFPP) and interferon therapy in patients with chronic hepatitis C: A preliminary study
- High-pressure infrared absorption in Cs2TCNQ3 crystals grown under magnetic field
- Caffeoyl arbutin and related compounds from the buds of Vaccinium dunalianum
- B cell signaling and autoimmune diseases: CD19/CD22 loop as a B cell signaling device to regulate the balance of autoimmunity