Parameter sensitivity studies for the ice flow of the Ross Ice Shelf, Antarctica
スポンサーリンク
概要
- 論文の詳細を見る
The diagnostic, dynamic/thermodynamic ice shelf model Finite Element Shallow Shelf Approximation Code (FESSACODE) is applied to the Ross Ice Shelf. We simulate the present ice flow which results from the ice thickness distribution, the inflow at the grounding line, and the surface and bottom temperatures and compare results with measured flow velocities. Our reference simulation reproduces the general flow pattern and the magnitudes of the flow velocities reasonably well. The ice flow is found to be very sensitive to the flow enhancement factor, the ice thickness, and the ice temperature but robust against inflow velocities from ice streams, glaciers, and ice rises. The ice rises (Roosevelt Island and Crary Ice Rise) stabilize the ice shelf by significantly decreasing the flow velocities for the entire ice shelf area. The ice shelf is susceptible to global warming in that a 2°C surface warming entails an increase of the flow velocities by a factor 1.25, whereas a 10°C warming leads to an increase by a factor 3.1.
- American Geophysical Unionの論文
- 2005-12-10
American Geophysical Union | 論文
- Intra-annual variations in atmospheric dust and tritium in the North Pacific region detected from an ice core from Mount Wrangell, Alaska
- The Variation on the atmospheric concentrations of biogenic carbonyl compounds and their removal processes in the northern forest at Moshiri, Hokkaido Island in Japan
- Delamination structure imaged in the source area of the 1982 Urakawa-oki earthquake
- Size distributions of dicarboxylic acids and inorganic ions in atmospheric aerosols collected during polar sunrise in the Canadian high Arctic
- Thickness distribution, texture and stratigraphy, and a simple probabilistic model for dynamical thickening of sea ice in the southern Sea of Okhotsk