Catalyst-free growth of GaAs nanowires by selective-area metalorganic vapor-phase epitaxy
スポンサーリンク
概要
- 論文の詳細を見る
We report on the fabrication of GaAs hexagonal nanowires surrounded by (110) vertical facets on a GaAs (111) B substrate using selective-area (SA) metalorganic vapor-phase epitaxial (MOVPE) growth. The substrate for SA growth was partially covered with thin SiO2, and a circular mask opening with a diameter d0 of 50–200 nm was defined. After SA-MOVPE, GaAs nanowires with a typical diameter d ranging from 50 to 200 nm and a height from 2 to 9 mm were formed vertically on the substrate without any catalysts. The size of the nanowire depends on the growth conditions and the opening size of the masked substrate. A possible growth mechanism is also discussed
- American Institute of Physicsの論文
- 2005-05-23
American Institute of Physics | 論文
- Influence of film composition in Co2MnSi electrodes on tunnel magnetoresistance characteristics of Co2MnSi/MgO/Co2MnSi magnetic tunnel junctions
- Tunneling anisotropic magnetoresistance in epitaxial CoFe/n-GaAs junctions
- Highly spin-polarized tunneling in fully epitaxial Co2Cr0.6Fe0.4Al/MgO/Co50Fe50 magnetic tunnel junctions with exchange biasing
- Tunnel magnetoresistance in epitaxial magnetic tunnel junctions using full-Heusler alloy Co2MnGe thin film and MgO tunnel barrier
- Structural and magnetic properties of epitaxially grown full-Heusler alloy Co2MnGe thin films deposited using magnetron sputtering