Effects of interface states and temperature on the C-V behavior of metal/insulator/AlGaN/GaN heterostructure capacitors
スポンサーリンク
概要
- 論文の詳細を見る
The impact of states at the insulator/AlGaN interface on the capacitance-voltage (C-V) characteristics of a metal/insulator/AlGaN/GaN heterostructure (MISH) capacitor was examined using a numerical solver of a Poisson equation and taking into account the electron emission rate from the interface states. A parallel shift of the theoretical C-V curves, instead of the typical change in their slope, was found for a MISH device with a 25-nm-thick AlGaN layer when the SiNx/AlGaN interface state density Dit(E) was increased. We attribute this behavior to the position of the Fermi level at the SiNx/AlGaN interface below the AlGaN valence band maximum when the gate bias is near the threshold voltage and to the insensitivity of the deep interface traps to the gate voltage due to a low emission rate. A typical stretch out of the theoretical C-V curve was obtained only for a MISH structure with a very thin AlGaN layer at 300℃. We analyzed the experimental C-V characteristics from a SiNx/Al2O3/AlGaN/GaN structure measured at room temperature and 300℃, and extracted a part of Dit(E). The relatively low Dit (~1011 eV−1 cm−2) in the upper bandgap indicates that the SiNx/Al2O3 bilayer is applicable as a gate insulator and as an AlGaN surface passivant in high-temperature, high-power AlGaN/GaN-based devices.
- American Institute of Physicsの論文
- 2008-05-28
American Institute of Physics | 論文
- Influence of film composition in Co2MnSi electrodes on tunnel magnetoresistance characteristics of Co2MnSi/MgO/Co2MnSi magnetic tunnel junctions
- Tunneling anisotropic magnetoresistance in epitaxial CoFe/n-GaAs junctions
- Highly spin-polarized tunneling in fully epitaxial Co2Cr0.6Fe0.4Al/MgO/Co50Fe50 magnetic tunnel junctions with exchange biasing
- Tunnel magnetoresistance in epitaxial magnetic tunnel junctions using full-Heusler alloy Co2MnGe thin film and MgO tunnel barrier
- Structural and magnetic properties of epitaxially grown full-Heusler alloy Co2MnGe thin films deposited using magnetron sputtering