Generating Organic Textures with Controlled Anisotropy and Directionality
スポンサーリンク
概要
- 論文の詳細を見る
This article presents a computational method for generating organic textures. The method first tessellates a region into a set of pseudo-Voronoi polygons using a particle model and then generates the detailed geometry of each of the polygons using Loop's subdivision surface with fractal noise. Unlike previous particle models-which are designed for creating hexagonal cell arrangements-this particle model can also create rectangular cell arrangements, often observed in organic textures. In either cell arrangement, the method lets a user control the anisotropy of the cell geometry and the directionality of the cell arrangements. A detailed 3D cell geometry is then created by adjusting a set of parameters that controls the cells' height and degree of skewing and tapering. A user can create various types of realistic looking organic textures by choosing a cell arrangement type, anisotropy, and directionality, along with the geometry control parameters.
- Institute of Electrical and Electronics Engineers (IEEE)の論文
Institute of Electrical and Electronics Engineers (IEEE) | 論文
- Analysis on Operation of a F-FET Memory With an Intermediate Electrode
- EXIT Chart-Aided Adaptive Coding for Multilevel BICM With Turbo Equalization in Frequency-Selective MIMO Channels
- Iterative Frequency Domain Joint-over-Antenna Detection in Multiuser MIMO
- An Analytical Method for MMSE MIMO Turbo Equalizer EXIT Chart Computation
- Multilevel-Coded QAM With MIMO Turbo-Equalization in Broadband Single-Carrier Signaling