Exciton–LO-phonon interaction in CuCl spherical quantum dots studied by resonant hyper-Raman spectroscopy
スポンサーリンク
概要
- 論文の詳細を見る
Resonant hyper-Raman-scattering spectroscopy was applied for studies of the exciton–LO-phonon interaction in spherical CuCl nanocrystals of different sizes embedded in a glass matrix. Both the LO and 2LO phonon bands have shown a prominent resonance with the lowest energy 1S confined exciton state. The ratio of the integral intensities of the LO and 2LO bands ρ was found to increase with increase of the incident photon energy, or decrease of the nanocrystal radius. The Huang-Rhys factor S has been calculated as a function of the nanocrystal size from the experimentally measured values of ρ on the offset harmonic-oscillator model of electron-vibrational coupling. It has been found that S increases monotonically from 0.22 to 0.7, with the nanocrystal radius decreasing from 3.6 to 1.6 nm.
- American Physical Societyの論文
American Physical Society | 論文
- Magnetic structure of GdB4 from spherical neutron polarimetry
- Experimental evidence of noncollinear magnetism in gadolinium tetraboride
- Antiferromagnetic Kondo-lattice systems Ce2Rh3Ge5 and Ce2Ir3Ge5 with moderate heavy-fermion behavior
- Magnetic torque and ac and dc magnetic susceptibility measurements on PTMA0.5[Fe(Pc)(CN)2]・CH3CN: Origin of spontaneous magnetization in [Fe(Pc)(CN)2] molecular conductors
- Magnetic torque and heat capacity measurements on TPP[Fe(Pc)(CN)2]2