Entanglement entropy and the Berry phase in the solid state
スポンサーリンク
概要
- 論文の詳細を見る
The entanglement entropy (von Neumann entropy) has been used to characterize the complexity of many-body ground states in strongly correlated systems. In this paper, we try to establish a connection between the lower bound of the von Neumann entropy and the Berry phase defined for quantum ground states. As an example, a family of translational invariant lattice free fermion systems with two bands separated by a finite gap is investigated. We argue that, for one-dimensional (1D) cases, when the Berry phase (Zak's phase) of the occupied band is equal to pi×(odd integer) and when the ground state respects a discrete unitary particle-hole symmetry (chiral symmetry), the entanglement entropy in the thermodynamic limit is at least larger than ln 2 (per boundary), i.e., the entanglement entropy that corresponds to a maximally entangled pair of two qubits. We also discuss how this lower bound is related to vanishing of the expectation value of a certain nonlocal operator which creates a kink in 1D systems.
論文 | ランダム
- テクニカル・レポート 「身体運動の計測とスペクトル解析」
- 3次元Video画像解析によるリハビリテ-ション医学への応用-2-
- 3次元Video画像解析によるリハビリテ-ション医学への応用
- 人の立位平衡時におけるフィ-ドバック制御解析-2-多変量自己回帰モデルの利用
- 人の立位平衡時におけるフィ-ドバック制御解析-1-3次元Video画像計測デ-タと平衡機能検査デ-タの利用