Entanglement entropy and the Berry phase in the solid state
スポンサーリンク
概要
- 論文の詳細を見る
The entanglement entropy (von Neumann entropy) has been used to characterize the complexity of many-body ground states in strongly correlated systems. In this paper, we try to establish a connection between the lower bound of the von Neumann entropy and the Berry phase defined for quantum ground states. As an example, a family of translational invariant lattice free fermion systems with two bands separated by a finite gap is investigated. We argue that, for one-dimensional (1D) cases, when the Berry phase (Zak's phase) of the occupied band is equal to pi×(odd integer) and when the ground state respects a discrete unitary particle-hole symmetry (chiral symmetry), the entanglement entropy in the thermodynamic limit is at least larger than ln 2 (per boundary), i.e., the entanglement entropy that corresponds to a maximally entangled pair of two qubits. We also discuss how this lower bound is related to vanishing of the expectation value of a certain nonlocal operator which creates a kink in 1D systems.
論文 | ランダム
- GLP-1 Secretion in Response to Oral and Luminal Palatinose (Isomaltulose) in Rats
- Salivary stress markers and psychological stress in simulated microgravity: 21 days in 6° head-down tilt
- 痙直型脳性麻痺児の筋病理学的所見と臨床症状の関連
- 水頭症2症例に生じた平衡機能障害に対する作業療法効果に関する研究
- 青年期学習障害者の長期フォロー経過について