Collapse of the charge gap in random Mott insulators
スポンサーリンク
概要
- 論文の詳細を見る
Effects of randomness on interacting fermionic systems in one dimension are investigated by quantum Monte Carlo techniques. At first, interacting spinless fermions are studied whose ground state shows charge ordering. Quantum phase transition due to randomness is observed associated with the collapse of the charge ordering. We also treat random Hubbard model focusing on the Mott gap. Although the randomness closes the Mott gap and low-lying states are created, which is observed in the charge compressibility, no (quasi-)Fermi-surface singularity is formed. It implies localized nature of the low-lying states.erratum:PHYSICAL REVIEW B, VOLUME 65, 249901
- The American Physical Societyの論文
The American Physical Society | 論文
- First-principles calculations of the geometry and electronic structure of electron- and hole-doped C60 in the field-effect transistor structure
- Superconducting characteristics in electron-doped layered hafnium nitride : 15N isotope effect studies
- Unconventional Superconductivity in Electron-Doped Layered Li0.48(THF)yHfNCl
- Electrical-resistivity and low-temperature specific-heat measurements of single crystals of thiospinel CuV2S4
- Kaon B Parameter from Quenched Lattice QCD