H∞ DIA control of magnetic suspension systems
スポンサーリンク
概要
- 論文の詳細を見る
This paper deals with the ℋH∞ DIA control system design attenuating initial-state uncertainties and its application to magnetic suspension systems. Here the ℋH∞, DIA control means a mixed Disturbance and an Initial-state uncertainty Attenuation(DIA) control for linear time-invariant systems in the infinite-horizon case. The ℋH∞ DIA control problem supplies ℋH∞ controls with good transients and assures ℋH∞ controls of robustness against initial-state uncertainties. We derived a necessary and sufficient condition of the generalized ℋH∞ DIA problem. In this paper, we apply this ℋH∞ DIA approach to magnetic suspension systems, and evaluate a mixed attenuation property of the proposed approach via experiments. We investigate a role of the weighting matrix N for the initial state uncertainty in the control system design. © 2004 IEEE.
- Institute of Electrical and Electronics Engineers (IEEE)の論文
- 2004-00-00
Institute of Electrical and Electronics Engineers (IEEE) | 論文
- Analysis on Operation of a F-FET Memory With an Intermediate Electrode
- EXIT Chart-Aided Adaptive Coding for Multilevel BICM With Turbo Equalization in Frequency-Selective MIMO Channels
- Iterative Frequency Domain Joint-over-Antenna Detection in Multiuser MIMO
- An Analytical Method for MMSE MIMO Turbo Equalizer EXIT Chart Computation
- Multilevel-Coded QAM With MIMO Turbo-Equalization in Broadband Single-Carrier Signaling