バビロニアの幾何学 : 2, 3の未解決問題について
スポンサーリンク
概要
- 論文の詳細を見る
Many investigations, especially that of Neugebauer, have thrown light upon Babylonian mathematics. But some problems still remain unsettled and I will attempt to interpret some of them. 1. I conjecture that the triangle in MLC 1950 was originally a right-angled one and the area-formula for a trapezoid was obtained by using what is called "Gnomon". 2. Problems which deal with the segment of a circle in BM 85194, MLC 1354 have similar contents; the arrow of the segment is 1/4 (igi-gub-ba) of a diameter and the area of it is replaced approximately with an area of a trapezoid whose height is 2/3 of the arrow. But this approximation is not a good one. The quadratic equation in MLC 1354 is solved by the same procedure in BM 13901. 3. I am sure that a correct volume-formula was used in BM 85194 for a frustum of a pyramid. In the text we find for 1, 13・18 the value 22, 30 instead of 21, 54. One may explain this mistake as the result of error 1, 15・18, for standard multiplication tables involve 1, 15・n (n=1, 2, …, 19, 20, 30, 40, 50) but not 1, 13・n. Moreover we can get the formula V={((a+b)/2)^2+1/3((a-b)/2)^2}h by dividing a frustum of a pyramid into one rectangular parallelopiped and four triangular cones.
- 日本科学史学会の論文
- 1986-02-14
著者
関連論文
- バビロニアの文学作品に表れている数学の術後について
- バビロニア数学の"壁に立てかけられた棒"に関する2つの問題について
- バビロニア数学における平方根の近似計算 : VAT 6598 Rs. II. 1-4の解釈について
- バビロニアの幾何学 : 2, 3の未解決問題について
- バビロニア数学における容量単位silaの特殊用法とVAT 8522の解釈について
- バビロニア数学粘土板AO 6770の再検討と新解釈の提出
- 数学粘土板VAT 672の一所見
- バビロニアの文学作品に表れている数学の術語について