Comparison of Methods for Topic Classification of Spoken Inquiries (Preprint)
スポンサーリンク
概要
- 論文の詳細を見る
In this work, we address the topic classification of spoken inquiries in Japanese that are received by a speech-oriented guidance system operating in a real environment. The classification of spoken inquiries is often hindered by automatic speech recognition (ASR) errors, the sparseness of features and the shortness of spontaneous speech utterances. Here, we compare the performances of a support vector machine (SVM) with a radial basis function (RBF) kernel, PrefixSpan boosting (pboost) and the maximum entropy (ME) method, which are supervised learning methods. We also combine their predictions using a stacked generalization (SG) scheme. We also perform an evaluation using words or characters as features for the classifiers. Using characters as features is possible in Japanese owing to the presence of kanji, ideograms originating from Chinese characters that represent not only sounds but also meanings. We performed analyses on the performance of the above methods and their combination in dealing with the indicated problems. Experimental results show an F-measure of 86.87% for the classification of ASR results from children's inquiries with an average performance improvement of 2.81% compared with the performance of individual classifiers, and an F-measure of 93.96% with an average improvement of 1.89% for adults' inquiries when using the SG scheme and character features.------------------------------This is a preprint of an article intended for publication Journal ofInformation Processing(JIP). This preprint should not be cited. Thisarticle should be cited as: Journal of Information Processing Vol.21(2013) No.2 (online)------------------------------
- 2013-02-15
著者
-
川波 弘道
電総研
-
Hiromichi Kawanami
Department of Statistical Modeling, The Institute of Statistical Mathematics
-
Hiroshi Saruwatari
Nara Institute of Science and Technology
-
Kiyohiro Shikano
Nara Institute of Science and Technology
-
KAWANAMI HIROMICHI
Graduate School of Information Science, Nara Institute of Science and Technology
-
Hiromichi Kawanami
Nara Institute of Science and Technology
-
Rafael Torres
Nara Institute of Science and Technology
-
Tomoko Matsui
The Institute of Statistical Mathematics
-
川波 弘道
Nara Institute of Science and Technology
関連論文
- ユーザ負担のない話者・環境適応性を実現する自然な音声対話処理技術の総合開発(総合報告)
- 括弧表現に基づくWebテキストマイニングを用いた流行語への自動読み付与の提案
- 実環境向け音声対話ロボット「キタちゃん」の開発
- 音声対話システムにおけるWeb検索タスクの発話分析とWeb検索のための大規模単語コーパスの検討(言語モデル)
- Google N-gramを用いた音声認識のタスク汎用性評価の試み (音声)
- 3Q-3 NAMマイクによる心音の収録とその明瞭化(音声の分析・合成,学生セッション,人工知能と認知科学)
- 多対多最小パターンアライメントアルゴリズムの提案と自動読み付与による評価
- Stacked Generalization for Topic Classification of Spoken Inquiries
- The Use of Transformed Normal Speech Data in Acoustic Model Training for Non-Audible Murmur Recognition
- 4L-3 ハンズフリーロボット対話実験システムの構築(リーディングプロジェクト e-society:自然な音声対話処理技術(2),一般セッション,リーディングプロジェクト e-society)
- 未知語認識のための仮名・漢字単位の構築手法と性能評価
- Google N-gramを用いた音声認識のタスク汎用性評価の試み
- 広告音声に見られる韻律的特徴とその制御要因に関する考察
- An Evaluation of Discriminative Training for Hidden Markov Models in a Real-Environment Speech-Oriented Guidance System
- 単語の頻度と音響の特徴を利用したSVMによる無効入力の棄却
- 音声情報案内システムにおけるSVMを用いたタスク外発話の検出
- Designing Target Cost Function Based on Prosody of Speech Database(Speech Synthesis and Prosody, Corpus-Based Speech Technologies)
- Cross-language Voice Conversion Evaluation Using Bilingual Databases (特集 音声言語情報処理とその応用)
- 音声情報案内システムにおける質問応答データベース構築コスト削減の検討
- Development, Long-Term Operation and Portability of a Real-Environment Speech-Oriented Guidance System
- Inquiry Classification in a Speech-Oriented Guidance System Using Discriminative Learning
- 統計的機械翻訳の手法を用いた音声情報案内システムのための応答文生成手法の検討
- 音声情報案内システムにおけるBag-of-Wordsを特徴量とした無効入力の棄却
- 携帯端末用の音声情報案内システム開発に向けたネットワークサービスの検討
- D-9-36 多様な利用環境における音声情報案内サービスソフトウェアの開発(D-9.ライフインテリジェンスとオフィス情報システム,一般セッション)
- Comparison of Methods for Topic Classification of Spoken Inquiries (Preprint)
- 10年間の長期運用を支えた音声情報案内システム「たけまるくん」の技術(音声対話システムの実用化に向けて)