算数・数学教育における創造性に関する研究(II) : 算数・数学教育における発散的思考について
スポンサーリンク
概要
- 論文の詳細を見る
Creativity is a topic that is often neglected within mathematics teaching (Pehkonen, 1997). This neglect may well be related to the fact that there has been relatively little consideration of the concept of creativity within the area of mathematics education, even though the study of creativity in general in educational research has been highly fashionable since the 1950s (Haylock, 1987). The purpose of this paper is to identify and classify local divergent thinking, which could be considered to contribute to the number and variety of children's responses, in order to foster children's creativity and creative thinking more effectively from the viewpoint of mathematics education. As Baer (1993) has stated that divergent thinking may play an important role in creative performance if one knows when to use it (p.69), there might be a necessity to consider divergent thinking as local thinking and to classify it, in order to make children be clearly aware when to apply it. Four types of local divergent thinking that can be considered as different from each other are identified in this paper. They are the following. *Divergent Perception: This type is the thinking activity for perceiving diverse attributes of the object at hand. *Divergent Recollection: This type is the thinking activity for accessing to diverse knowledge by using the perceived attributes and accessed knowledge as a clue. *Divergent Transformation: This type is the thinking activity for transforming the perceived attributes and accessed knowledge to diverse information. *Divergent Connection: This type is the thinking activity for connecting perceived attributes and accessed knowledge to themselves in diverse ways. [figure] These types of local divergent thinking do not emerge independently throughout the total process of creative thinking, because they have complex structure of interrelationship (see Fig.1).
- 全国数学教育学会の論文
著者
関連論文
- H4 算数・数学教育における創造性に関する研究(3) : 数学的問題解決における固着に着目して(H 問題解決・数学的モデリング・他教科との関わり,論文発表の部)
- k13 創造性を培う数学学習についての一考察 : 教室文化の視点から(k.【その他】,口頭発表の部)
- B11 数学教育における創造性と探究活動 : 思考のフレームに着目して(B.【問題解決】,論文発表の部)
- 38-1数学教育における創造性に関する研究 : 発散的思考と固着に着目して(平成12年度 数学教育学修士論文要約)
- H2 数学教育における創造性に関する基礎的考察 : 数学的な創造性の本質的要素について(H 問題解決・数学的モデリング・他教科との関わり,論文発表の部)
- H4 算数・数学教育における創造性に関する研究(3) (第33回数学教育論文発表会発表論文要約)
- 算数・数学教育における創造性に関する研究(II) : 算数・数学教育における発散的思考について