現代集合論における巨大基数(<特集>あたらしい数理論理学の揺籃:証明論的な順序数と集合論的な順序数)
スポンサーリンク
概要
- 論文の詳細を見る
This article is to give a brief survey of roles of large cardinals (those ordinals which are in certain sense very big) in set theory of our time. In particular, close relationship of the structure of the continuum to large cardinals is emphasized. We also mention the inner model method which is a comparable approach to large cardinal axioms, so that we could make clear the reason why large cardinals are so important.
- 2012-03-25
著者
関連論文
- PARTITIONING A STATIONARY SET IN $mathcal{P}(\lambda)$ (Axiomatic Set Theory and Set-theoretic Topology)
- 定常集合の分割問題について(数学基礎論とその応用)
- The partition property of $\mathcal{P}_\kappa \lambda$(Forcing and Infinitary Combinatorics)
- Nonsplitting subset of $P_{\kappa}\lambda$ (Set Theory and Computability Theory of the Reals)
- 現代集合論における巨大基数(あたらしい数理論理学の揺籃:証明論的な順序数と集合論的な順序数)
- 特集への序文:あたらしい数理論理学の揺籃 : 証明論的な順序数と集合論的な順序数
- NOTES ON MIYAMOTO'S FORCING AXIOMS (Aspects of Descriptive Set Theory)