Percolation Thresholds of the Fortuin-Kasteleyn Cluster for the Edwards-Anderson Ising Model on Complex Networks : Analytical Results on the Nishimori Line(General and Mathematical Physics)
スポンサーリンク
概要
- 論文の詳細を見る
We analytically show the percolation thresholds of the Fortuin-Kasteleyn cluster for the Edwards-Anderson Ising model on random graphs with arbitrary degree distributions. The results on the Nishimori line are shown. We obtain the results for the ±J model, the diluted ±J model, and the Gaussian model, by applying an extension of a criterion for the random graphs with arbitrary degree distributions. The results for the infinite-range ±J model and the Sherrington-Kirkpatrick model are also shown.
- 2010-09-25
論文 | ランダム
- 41) Measurement of the Angular Range and Its Application to the Analysis of the Vector Loop
- Turbulent Boundary Layers on plates Roughened by Wires at Equal Intervals
- 小児用バイトブロックを兼ねたチューブホルダーの考案
- 救命ライフラインとしての病院内外水道システムに対する脆弱管路更新評価法
- 新潟県中越地震における病院ライフラインの被害と分析