ε-δ論法による微積分学の形成におけるCauchyとWeierstrassの寄与
スポンサーリンク
概要
- 論文の詳細を見る
This paper clarifies Cauchy's and Weierstrass's contributions to the construction of differential calculus represented in terms of epsilonics. In the eighteenth century the limit concept had a geometrical image that is typically represented in "indefinitely approaching to a fixed value". In 1820s Cauchy described this concept in terms of inequalities and defined the limit. Since his new calculus theory was based on this concept, he could transform previous results from calculus to his new theory developed only by algebraic techniques. He also defined his original concept of infinitesimals based on the limit concept. The relations between the infinitesimals and infinitely large numbers or infinitesimally small changes can be represented in term of epsilon-delta inequalities. Although Cauchy occasionally used the term of infinitesimals in the usual sense, he substantially developed his calculus theory in epsilonics using his infinitesimals. Weierstrass noted the differential calculus needs to apply neither Cauchy's limit nor infinitesimals, but the relations that involve them. Neither isolated limits nor infinitesimals can be written in terms of epsilon-delta inequalities, but their relations can. Weierstrass began his 1861 lectures on the differential calculus by defining the fundamental concepts in terms of epsilon-delta inequalities. His original limit concept was also defined in terms of these, without any geometrical image. In contrast to Cauchy, Weierstrass's theory was pure algebraic and had no geometrical background. Although both mathematicians basically developed their differential calculus in epsilonics, the essential difference between their approaches lies in this point.
- 2009-09-25
著者
関連論文
- シンポジウム : 古典力学の展開オイラー生誕300年を記念して : 2007年度年会報告
- オイラーと19世紀力学:解析力学の基礎と極値原理(古典力学の展開オイラー生誕300年を記念して-2007年度年会報告-)
- 専門教育科目としての科学史・数学史 : 知識を能力に高めるために(大学変革期における科学史教育,2010年度年会報告)
- ε-δ論法による微積分学の形成におけるCauchyとWeierstrassの寄与
- シンポジウム開催の趣旨
- 19世紀の解析学における「厳密化革命」とは何か
- アメリカ数学会・アメリカ数学協会合同年会に見る数学史研究事情(アゴラ)
- 好田順治訳, エリ・マオール著, 『素晴らしい三角法の世界』, 青土社, 1999年9月, 2800円, ISBN4-7917-5738-6(紹介)
- 作用-角変数の形成におけるC.V.L. Charlierの寄与
- W.R.Hamiltonの光学の特性関数と「最小作用の原理」
- 『新科学論議』におけるガリレオの連続性概念
- 河田敬義, 『(19世紀の数学)整数論』, 共立出版株式会社, 1992年, 195ページ, A5判, 4120円
- 赤木昭夫訳, スティルマン・ドレイク著, 『ガリレオの思考をたどる』, 産業図書, 1993年3月, 359pp., ISBN4-7828-0078-9, 定価3605円
- W. R. Hamiltonの光学-力学の統一的記述と特性関数