On the Sensitivity of Atmospheric Ensembles to Cloud Microphysics in Long-Term Cloud-Resolving Model Simulations(<Special Issue>The International Workshop on High-Resolution and Cloud Modeling, 2006)
スポンサーリンク
概要
- 論文の詳細を見る
Month-long large-scale forcing data from two field campaigns are used to drive a cloud-resolving model (CRM) and produce ensemble simulations of clouds and precipitation. Observational data are then used to evaluate the model results. To improve the model results, a new parameterization of the Bergeron process is proposed that incorporates the number concentration of ice nuclei (IN). Numerical simulations reveal that atmospheric ensembles are sensitive to IN concentration and ice crystal multiplication. Two- (2D) and three-dimensional (3D) simulations are carried out to address the sensitivity of atmospheric ensembles to model dimensionality. It is found that the ensembles with high IN concentration are more sensitive to dimensionality than those with low IN concentration. Both the analytic solutions of linear dry models and the CRM output show that there are more convective cores with stronger updrafts in 3D simulations than in 2D, which explains the differing sensitivity of the ensembles to dimensionality at different IN concentrations.
- 社団法人日本気象学会の論文
- 2008-11-25
著者
-
Hou Arthur
Laboratory For Atmospheres Nasa Goddard Space Flight Center
-
Tao Wei-kuo
Laboratory For Atmospheres Nasa Goddard Space Flight Center
-
Tao Wei-kuo
Laboratory For Atmosphere Nasa Goddard Space Flight Center
-
ZENG Xiping
Goddard Earth Sciences and Technology Center, University of Maryland at Baltimore County
-
LANG Stephen
Laboratory for Atmospheres, NASA Goddard Space Flight Center
-
ZHANG Minghua
School of Marine and Atmospheric Sciences, Stony Brook University
-
SIMPSON Joanne
Laboratory for Atmospheres, NASA Goddard Space Flight Center
-
Zeng Xiping
Goddard Earth Sciences And Technology Center University Of Maryland At Baltimore County:laboratory F
-
Lang Stephen
Laboratory For Atmospheres Nasa Goddard Space Flight Center:science Systems And Applications Inc.
-
Zhang Minghua
School Of Marine And Atmospheric Sciences Stony Brook University
-
Simpson Joanne
Laboratory For Atmospheres Nasa Goddard Space Flight Center
-
Zeng Xiping
Goddard Earth Sciences And Technology Center University Of Maryland
-
Tao Wei-Kuo
Laboratory for Atmospheres, NASA Goddard Space Flight Center
関連論文
- An Overview of the Field Experiment "Winter Mesoscale Convective Systems (MCSs) over the Japan Sea in 2001", and Comparisons of the Cold-air Outbreak Case (14 January) between Analysis and a Non-hydrostatic Cloud-resolving Model
- On the Sensitivity of Atmospheric Ensembles to Cloud Microphysics in Long-Term Cloud-Resolving Model Simulations(The International Workshop on High-Resolution and Cloud Modeling, 2006)
- C116 TRMM PRデータからの潜熱加熱プロファイルのスペクトル推定 : 2次元および3次元モデルから作成された参照テーブルの比較(降水システムI)
- P311 TRMM衛星搭載マイクロ波放射計と降雨レーダデータを用いた降雨と無降雨を識別するための雲水量の閾値の決定法の提案とその応用
- P152 TRMM PRデータからの潜熱加熱プロファイルのスペクトル推定 : 熱帯海洋上の加湿プロファイルの推定
- Characteristics of Heavy Summer Rainfall in Southwestern Taiwan in Relation to Orographic Effects
- A171 TRMM PRデータからの潜熱加熱プロファイルのスペクトル推定 : 対流性加熱推定の改良(降水システムII)
- P157 TRMM PRデータからの潜熱加熱プロファイルのスペクトル推定パート2 : Look-upテーブルの比較
- TRMM PRデータからの潜熱加熱プロファイルのスペクトル推定 : 雲解像モデルによるアルゴリズム開発(2)
- TRMM PRデータからの潜熱加熱プロファイルのスペクトル推定 : 雲解像モデルによるアルゴリズム開発
- Cloud Resolving Modeling(125th Anniversary Issue of the Meteorological Society of Japan)
- Mesoscale Assimilation of TMI Rainfall Data with 4DVAR : Sensitivity Studies
- A Set of Prognostic Variables for Long-Term Cloud-Resolving Model Simulations
- A Set of Prognostic Variables for Long-Term Cloud-Resolving Model Simulations