Solution of Gylden-Lindstedt Equation
スポンサーリンク
概要
- 論文の詳細を見る
It often occurs in the celestial mechanics a linear differential equation with a periodic coefficient d^2x/dt^2+m^2x=2εxcosw',w'=λt+β, where m, λ, β are given constants and ε is a small given constant. In the present paper I give a solution and its mean motion of the above equation up to the 6th order of ε by making use of Lindtstedt's method which does not give rise to mixed secular terms.
- 千葉商科大学の論文
著者
関連論文
- Solution of Gylden-Lindstedt Equation
- Henrard′s Method for Separable Hamiltonian Systems with Two Degrees of Freedom
- Hillの周期軌道に接続する周期軌道
- プトレマイオスの太陽理論
- Hillの問題における零速度曲面
- 楕円型Hillの運動方程式