Ultrashort Optical Solitons in the Cubic-Quintic Complex Ginzburg-Landau Equation with Higher-Order Terms(Electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid mechanics)
スポンサーリンク
概要
- 論文の詳細を見る
With the help of the Maxwell equations, a basic equation modeling the propagation of ultrashort optical solitons in optical fiber is derived, namely the higher-order complex Ginzburg-Landau equation (HCGLE). Considering this one-dimensional HCGLE, we obtain a set of differential equations characterizing the variation of the pulse parameters called collective variables (CVs), of a pulse propagating in dispersion-managed (DM) fiber optic-links. Equations obtained are investigated numerically in order to observe the behaviour of pulse parameters along the optical fiber. A fully numerical simulation of the one-dimensional HCGLE finally tests the results of the CV theory. A good agreement between both methods is observed. Among various behaviours, chaotic pulses, attenuate pulses and stable pulses can be obtained under certain parameter values.
- 2008-07-15
著者
-
Kofane Timoleon
Departement De Physique Faculte Des Sciences Universite De Yaounde I:the Abdus Salam International C
-
FEWO Serge
Departement de Physique, Faculte des Sciences, Universite de Yaounde I
-
NGABIRENG Claude
Departement de Mathematique-Physique, Ecole Nationale Superieure Polytechnique, Universite de Yaounde I
-
Fewo Serge
Departement De Physique Faculte Des Sciences Universite De Yaounde I
関連論文
- Comment on "Loop Soliton Solutions of String Interacting with External Field"
- Reply to "Comment on 'On Two-Loop Soliton Solution of the Schafer-Wayne Short-Pulse Equation Using Hirota's Method and Hodnett-Moloney Approach'"
- On the Conversion of Exact Rotating Loop-Like Soliton Solution to Generalized Schafer-Wayne Short Pulse Equation(General)
- Ultrashort Optical Solitons in the Cubic-Quintic Complex Ginzburg-Landau Equation with Higher-Order Terms(Electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid mechanics)