Infinite dimensional stochastic processes associated with the Exotic Laplacians (非可換解析とミクロ・マクロ双対性--RIMS研究集会報告集)
スポンサーリンク
概要
著者
-
齋藤 公明
名城大学理工学部
-
JI UN
DEPARTMENT OF MATHEMATICS, RESEARCH INSTITUTE OF MATHEMATICAL FINANCE, CHUNGBUK NATIONAL UNIVERSITY
-
Ji Un
Department Of Business Administration Hanyang University
-
斎藤 公明
名城大学理工学部
関連論文
- Infinite dimensional stochastic processes associated with the Exotic Laplacians (非可換解析とミクロ・マクロ双対性--RIMS研究集会報告集)
- Functional Ito Formula for Quantum Semimartingales (Infinite Dimensional Analysis and Quantum Probability Theory)
- Segal-Bargmann Transform of White Noise Operators and White Noise Differential Equations (Analytical Study of Quantum Information and Related Fields)
- A characterization theorem for operators on white noise functionals
- Transformations on white noise functions associated with second order differential operators of diagonal type
- Transforms on white noise functionals with their applications to Cauchy problems
- A role of Bargmann-Segal spaces in characterization and expansion of operators on Fock space
- Cauchy Problems in White Noise Analysis and An Application to Finite Dimensional PDEs II (New Development of Infinite-Dimensional Analysis and Quantum Probability)
- Semigroups and Stochastic Processes associated with functions of the Levy Laplacian (Recent Trends in Stochastic Models arising in Natural Phenomena and the Theory of Measure-valued Stochastic Processes)
- Hitsuda-Skorohod quantum stochastic integrals in terms of quantum stochastic gradients (量子解析におけるミクロ・マクロ双対性--RIMS共同研究報告集)
- Quantum Stochastic Gradients